首页> 外文OA文献 >Generating Smooth Surfaces with Bicubic Splines over Triangular Meshes: Toward Automatic Model Building From Unorganized 3D Points
【2h】

Generating Smooth Surfaces with Bicubic Splines over Triangular Meshes: Toward Automatic Model Building From Unorganized 3D Points

机译:在三角网格上用双三次样条生成平滑表面:从无组织的3D点建立自动模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new algorithm for constructing tangent plane continuous (G1) surfaces with piecewise polynomials over triangular meshes. The input mesh can be of arbitrary topological type, that is, any number of faces can meet at a mesh vertex. The mesh is first refines to one solely with quadrilateral cells. Rectangular B\ue9zier patches are then assigned to each of the cells and control points are determined so that G1 continuity across the patch boundaries is maintained. Since all the patches are rectangular, the resulting surface can be rendered efficiently by current commercial graphic hardware/software. In addition, by exploiting the fact that all the faces of the original mesh are triangular. The degree of each patch is optimized to three while more general method dealing with arbitrary irregular meshes requires biquartic patches. Several surface examples generated from real 3D data are shown.
机译:本文提出了一种在三角网格上构造具有分段多项式的切平面连续(G1)曲面的新算法。输入网格可以是任意拓扑类型,也就是说,可以在网格顶点处遇到任意数量的面。首先将网格细化为仅具有四边形单元的网格。然后,将矩形B \ ue9zier贴片分配给每个像元,并确定控制点,以便维持跨贴片边界的G1连续性。由于所有补丁都是矩形的,因此可以通过当前的商用图形硬件/软件有效地渲染所得表面。另外,通过利用原始网格的所有面都是三角形的事实。每个面片的程度被优化为三个,而处理任意不规则网格的更通用方法则需要双阶面片。显示了从真实3D数据生成的几个表面示例。

著录项

  • 作者

    Ueshiba, T.; Roth, Gerhard;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号